概要

国土地理院からダウンロードできる数値標高モデル(Digital Elevation Model:DEM)はJPGIS(GML)形式で書かれている。JPGIS(GML)形式はXML文書なのでPythonでこれを読み取ってGISソフトウェアなどで取り扱いやすいGeotiff形式に変換する。

Continue Reading...

問題

(1) 次の行列\(A\)を考える。

\[ A=\begin{pmatrix}1&-1&1\\1&0&-1\\-1&0&3\end{pmatrix}\]

(1-1) \(A=PJP^{-1}\)となるような行列\(P\)行列\(J\)が存在する。このとき\(J\)とそのような\(P\)のひとつを求めよ。ただし\(J\)は次の形式の行列とする。

\[ J=\begin{pmatrix}a&0&0\\0&b&1\\0&0&b\end{pmatrix}\]

(1-2) \(J^7,A^7\)を求めよ。

Continue Reading...

問題

(1) つぎのランダムな振幅\(A\)とランダムな位相\(\phi\)を持った正弦波信号\(X(t)=A\sin(\omega t+\phi)\)を考える。ここで、\(t\)は時間、\(\omega\)は角周波数であり、\(A,\phi\)は互いに独立とする。このとき

\[ X(t)=Y\sin\omega t+Z\cos\omega t\]

と表現し、新しい確率変数\(Y,Z\)を定義する。

(1-1) \(Y,Z\)\(A,\phi\)で表せ。

(1-2) \(A\)の確率密度関数が

\[ p_A(x)=x\exp\left(-\frac{x^2}2\right),\quad(x\gt 0)\]

\(\phi\)\((0,2\pi)\)上の一様分布に従うとする。このとき、\(Y,Z\)の同時確率密度関数を計算し\(X(t)\)の確率密度関数を求めよ。

Continue Reading...

問題

(1-i) 行列\(A\)に対して、ある\(n\geqq 1\)が存在して\(A^n=E\)(単位行列)であれば、\(A\)は正則である。これを示せ。

(1-ii) 2次実正方行列\(X\)を変数とする以下の方程式に解は存在するか。もし存在するならば解のひとつを求めよ。

\[ \begin{pmatrix}2&2\\4&3\end{pmatrix}X+X\begin{pmatrix}1&1\\0&-1\end{pmatrix}=\begin{pmatrix}0&2\\0&1\end{pmatrix}\]

(1-iii) \(n\)次正方行列\(A\)の固有値を\(\lambda_1,\lambda_2,\dots,\lambda_n\)で表す。この時

\[ \text{trace}(A)=\lambda_1+\lambda_2+\dots+\lambda_n\]

を示せ。

Continue Reading...

問題

(1) 1の16乗根で偏角が正で最小のものを\(z(\neq 1)\)とするとき、次の和を求めよ。

\[ S=\sum_{k=0}^7z^{2k}\]

(2) 次の定積分の値を求めよ。ただし(\(0)

\[ I=\int_{-\infty}^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}\]

(3) \(z=x+iy\)とするとき、関数\(f(z)=\sin(z^2)\)の実部を\(x\)\(y\)で表せ。

(4) 複素変数\(z=x+iy\)の正則関数\(f(z)\)の実部、虚部をそれぞれ\...

Continue Reading...