Contents

目的

pythonでnumpy配列を扱う何がしかのコードを書く時のあるある、久しぶりに書くと目的をスマートに達成するうまい書き方がわからない。配列は特にうまい書き方をするかしないかによってコードの行数にもろに響いてくる。forのネストでぶん回すのとか昔のC言語感しかしないよね。

View all of numpy配列ndarrayの基本操作メモ


問題

(1-i) 行列\(A\)に対して、ある\(n\geqq 1\)が存在して\(A^n=E\)(単位行列)であれば、\(A\)は正則である。これを示せ。

(1-ii) 2次実正方行列\(X\)を変数とする以下の方程式に解は存在するか。もし存在するならば解のひとつを求めよ。

\[ \begin{pmatrix}2&2\\4&3\end{pmatrix}X+X\begin{pmatrix}1&1\\0&-1\end{pmatrix}=\begin{pmatrix}0&2\\0&1\end{pmatrix}\]

(1-iii) \(n\)次正方行列\(A\)の固有値を\(\lambda_1,\lambda_2,\dots,\lambda_n\)で表す。この時

\[ \text{trace}(A)=\lambda_1+\lambda_2+\dots+\lambda_n\]

を示せ。

View all of とある数学の問題と解答のメモ921


問題

(1-1) \(x\)を実数として、次の行列のランクを求めよ。

\[ \begin{pmatrix}1&x&x\\x&1&x\\x&x&1\end{pmatrix}\]

(1-2) 整数行列\(A\)(全ての要素が整数であるような行列)について、\(A^{-1}\)も整数行列になるなら\(A\)の行列式は\(1\),\(-1\)のいずれかになることを証明せよ。

(1-3) \(A^T=-A\)を満たす実行列\(A\)について、この行列の固有値\(\lambda\)とそれに関する固有ベクトル\(x\)に対して\(A^Tx=\overline{\lambda}x\)の関係が知られている。これを用いて、行列\(A\)の固有値は純虚数になることを示せ。

View all of とある数学の問題と解答のメモ721


問題

(1) 次の行列\(A\)を考える。

\[ A=\begin{pmatrix}1&-1&1\\1&0&-1\\-1&0&3\end{pmatrix}\]

(1-1) \(A=PJP^{-1}\)となるような行列\(P\)行列\(J\)が存在する。このとき\(J\)とそのような\(P\)のひとつを求めよ。ただし\(J\)は次の形式の行列とする。

\[ J=\begin{pmatrix}a&0&0\\0&b&1\\0&0&b\end{pmatrix}\]

(1-2) \(J^7,A^7\)を求めよ。

View all of とある数学の問題と解答のメモ031


問題

確率変数\(X_1,X_2,\dots,X_n,\ Y_1,Y_2,\dots,Y_m\)は独立に正規分布に従い、それぞれ\(X_i\sim N(a\theta,\sigma^2),\ Y_j\sim N(b\theta,\sigma^2)\)とする。(\(i=1,2,\dots,n,\ j=1,2,\dots,m\)) ただし、\(N(\mu,\sigma^2)\)は平均\(\mu\)、分散\(\sigma^2\)の正規分布を表しており\(n,m\)は正の正数、\(a,b>0\)は定数で既知とする。\(\theta,\sigma^2\)は未知パラメータとする。

(1) \(\theta,\sigma^2\)について、\(X_1,X_2,\dots,X_n,Y_1,Y_2,\dots,Y_m\)を全て用いた最尤推定量を求めよ。

(2) 定数\(\alpha,\beta\)を用いて\(\tilde{\theta}=\alpha\overline{X}+\beta\overline{Y}\)と定義する。ただし、\(\overline{X}=(X_1+\dots,X_n)/n,\ \overline{Y}=(Y_1+\dots,Y_m)/n\)である。\(\tilde{\theta}\)の期待値\(E(\tilde{\theta})\)と分散\(V(\tilde{\theta})\)を求めよ。

(3) \(\tilde{\theta}\)\(\theta\)の不偏推定量となるために\(\alpha,\beta\)が満たす条件は何か。また、不偏推定量となる\(\tilde{\theta}\)\(V(\tilde{\theta})\)を最小にするときの\(\alpha,\beta\)の値を求めよ。

View all of とある数学の問題と解答のメモ034