/

問題

(1) 1の16乗根で偏角が正で最小のものを\(z(\neq 1)\)とするとき、次の和を求めよ。

\[ S=\sum_{k=0}^7z^{2k}\]

(2) 次の定積分の値を求めよ。ただし(\(0<a<b\))

\[ I=\int_{-\infty}^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}\]

(3) \(z=x+iy\)とするとき、関数\(f(z)=\sin(z^2)\)の実部を\(x\)\(y\)で表せ。

(4) 複素変数\(z=x+iy\)の正則関数\(f(z)\)の実部、虚部...

/

問題

あるコインを投げると、確率\(p\)で表、確率\(q=1-p\)で裏が出る(\(0\lt p\lt 1\))。このコインを投げる独立な試行を、表が出るまで繰り返す。初めて表が出るまでに投げた回数を確率変数\(T\)で表す。ただし表が出た試行も回数に含める。

(1) \(T=n (n=1,2,\dots)\)となる確率\(P(T=n)\)を求めよ。

(2) 確率変数\(T\)の期待値と分散を求めよ。

/

問題

(1) 確率変数\(X\)が以下の確率密度関数をもつ確率分布に従うものとする。

\[ f(x)=\left\{\begin{matrix}\sqrt{\frac1{\pi\alpha}}x^{-\frac12}e^{-\frac{x}{\alpha}}&(x>0)\\ 0&(x\leqq 0)\end{matrix}\right.\]

ここで、\(\alpha>0\)はパラメータである。

(1-1) 確率変数\(X\)の期待値を求めよ。

(1-2) 確率変数\(X\)の分散を求めよ。

(1-3) 上記の確率分布を母集団分布としてもつ母集団から\(n\)個の無作為標本\(\mathcal{X}=\{X_1,X_2,\dots,X_n\}\)が得られたとする。パラメータ\(\alpha\)の、\(\mathcal{X}\)に基づく最尤推定量を求めよ。

(1-4) 設問(1-3)で求めた最尤推定量が、パラメータ\(\alpha\)の不偏推定量であるかどうかを理由と共に答えよ。

/

問題

(1) 3次元実ベクトル空間において、媒介変数\(p,q\)によって定義される平面

\[ \begin{pmatrix}2\\0\\1\end{pmatrix}+p\begin{pmatrix}0\\-1\\1\end{pmatrix} +q\begin{pmatrix}3\\1\\0\end{pmatrix}\]

を考える。この平面を、\(\alpha\)を係数ベクトル、\(x\)を変数ベクトルとする方程式\(\alpha^Tx=1\)で表したとき、係数ベクトル\(\alpha\)の値を求めよ。

(2) 実数\(x,y,\alpha\)によって定義される不等式

\[ x^2+y^2+axy>0\]

を考える。この不等式が\(x=y=0\)を除くすべての\(x,y\)の組に対して成立するための必要十分条件を\(\alpha\)の範囲として求めよ。

(3) 正方の複素行列\(A\)がユニタリ行列によって対角化されるとき、\(AA^*=A^*A\)が満たされることを証明せよ。

/

問題

\(e\)をネイピア数(自然対数の底)とし,\(\exp(x)=e^x\)とする。

(1) 正整数\(N\)と実数\(\alpha\)を用いて,\(e=\alpha/N\)とする。

(1-1) 指数関数\(e^x\)のマクローリン展開を書け。

(1-2) 次の不等式が成り立つことを示せ。

\[ (N-1)!\alpha-\sum_{n=0}^N\frac{N!}{n!}<1\]

(1-3) 設問(1-2)の結果を用いて、実数\(\alpha\)が整数ではないことを示せ。