問題
(1) 確率変数\(Z_i=(X_i,Y_i), i=1,2,\dots,n\)は独立に次のように定義される確率分布に従う。各\(X_i,Y_i\)は0または1を値にとり、\(P(X_i=1)=\alpha,\ P(Y_i=1|X_i)=\beta X_i\)とする(一般に\(X_i\)と\(Y_i\)は独立ではない)。ただし\(n\)は正の整数、\(0<\alpha<1,\ 0<\beta<1\)は未知パラメータである。このとき以下の設問に答えなさい。
(1-1) 同時確率\(P(X_i=x,Y_i=y)\)を\((x,y)\)の取りうるすべての値について求めなさい。ただし\(\alpha,\beta\)を用いること。
(1-2) \(Z_i,\ i=1,2,\dots,n\)をすべて用いて、\(\alpha,\beta\)の最尤推定量\(\hat\alpha_n,\hat\beta_n\)を求めなさい。
(1-3) 制約条件\(\alpha+\beta=1\)を仮定する。このとき\(Z_i,\ i=1,2,\dots,n\)をすべて用いて、\(\alpha\)の最尤推定量\(\hat\alpha_n\)を求めなさい。